Coral Microatolls and a Low-resolution Record of Sea-level Changes

Colin D. Woodroffe
School of Earth and Environmental Sciences
University of Wollongong, NSW 2522, Australia
info@bassaltdc.com

Corals are particularly useful indicators of sea level over a range of time scales. Most corals grow in shallow water and radiometric dates, even if they are on corals that are in their growth position, are indicative, rather than definitive, of sea-level position. Coral microatolls are disc-shaped corals that have grown into the intertidal zone and whose lateral growth has been limited by exposure at low tide. Microatolls are living corals that have been isolated by predominantly dead on their upper surface. Microatolls in their growth position are fixed biological sea-level indicators and can be used to indicate previous limits to coral growth. The upper surface of these individual coral colonies track sea-level fluctuations associated with interannual to millennial scale fluctuations in sea level and provide low-resolution records of interannual sea-level variations at decadal to millennial scale that have been used for detailed reconstructions of Holocene sea level in those parts of the Indo-Pacific region which experienced a mid-Holocene sea-level highstand.

Microatolls were first described from the Cocos (Keeling) Islands by Guppy (1889), who initially termed them minute atolls. The geographical variation in microatolls around the Cocos (Keeling) Islands has been mapped in detail by Smithers and Woodroffe (2000), and it has been shown that fields of microatolls occur in three different habitats: on reef flats, in inter-reef passages, and in the lagoon. Microatolls have played an important role in deciphering the pattern of mid- and late Holocene sea-level changes, and a comparison of the elevation of each of these fields of the microatoll complexes (or atolls) with their living counterparts indicates that the sea was higher relative to Cocos around 3000 years ago (Figure 1).

Individual living microatoll colonies can be up to several metres in diameter. Microatolls grow up to a level close to mean low tide and are constrained by water level during their growth, so that a low-resolution water-level history is contained in the upper surface of the coral. Annual growth bands can be detected using X-radiography or fluorescence. The banding within microatolls confirms that growth has been primarily lateral and also indicates periods during which the limit to coral growth has been temporarily raised or lowered, as undulations on the upper surface of the colony. The height of the larger living specimens, F2 (Figure 1c) and PP30, have been sampled from Cocos, containing a low-resolution sea-level history for most of the 20th century. The two corals show good synchronous correlation indicating undulations of sea-level (a, b, c and d), and a pronounced hiatus occurring around 1982 (e), that appears related to El Niño events. A growth band corresponding to an undulation of sea level (f) is observed in microatoll growth in F2 and PP30, with ages of 40.0 mm mm at the nearest series of microatolls is indicated over the past century, with broad fluctuations of sea level of about 20 years of age and of 5-10 cm amplitude (Figure 3).

El Niño is a major control on the ocean surface in the central Pacific Ocean. Undulations on the top of microatolls from the central Pacific Ocean have been shown to track, but lag behind, sea-level fluctuations that are related to the El Niño-Southern Oscillation phenomenon (ENSO). Several examples are shown in Figure 4. A distinct fall in sea level associated with the 1982 El Niño was shown to have been captured in the surface morphology of a field of Porites microatolls (Figure 4a) from the reef flat of Abemama in Kiribati (Woodroffe and McLean, 1990); and similar variations occur in other unpublished records of corals from Christmas Island, Kiribati (Figure 4b). Record of the 1997 El Niño, together with annual annuli (Figure 4c) from the coral growth on Abaiang, Kiribati (Flora and Ely, 2003); and microatolls found in Tongareva, in the northern Cook Islands show longer records (Figure 4d), including distinct response to the 1982 and at least one earlier event (Spencer et al., 1997).

Microatolls offer important supplementary information to extend tidal gauge records back in time particularly for remote reef settings, with the prospect of linking living and fossil colonies using techniques such as isotope-based wiggle-matching, resolving the extent to which there have been oscillations of sea level during the Holocene. However, several cautions need to be exercised: i) storms can moat or re-align corals; ii) microatolls are related to mean sea level but to some poorly determined low water related to exposure of the reef flat; iii) growth in the coral’s response to water level rise because of the time required for the coral to grow vertically; and, iv) the dead upper surface of microatolls can undergo erosion so the record deteriorates. Nevertheless, microatolls are an important source of additional data on sea level.

References