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ABSTRACT

A coupled data assimilation (CDA) system, consisting of an ensemble filter applied to GFDL’s global fully-coupled
climate model (CM2), has been developed to facilitate the detection and prediction of seasonal-to-multidecadal
climate variability and climate trends. The assimilation provides a self-consistent, temporally-continuous estimate
of the coupled model state and its uncertainty, in the form of discrete ensemble members which can be used directly
to initialize probabilistic climate forecasts without initial shocks.

Then 1976-2006 real oceanic observations (XBTs,ARGOs,CTDs,MRBs,OSDs,MBTs and SSTs) and atmo-
spheric (NCAR/NCEP) reanalyses were assimilated into the coupled ensemble system to form 24 member
atmosphere/ocean/land/sea-ice state estimates. This talk focuses on the obtained oceanic reanalysis and its impact
on ENSO forecasts. Hindcast statistics show this ensemble climate state estimate and prediction system improved
ENSO forecast skills dramatically. This happens mainly because the self-consistent ensemble initial conditions from
this coupled assimilation system make all components of the coupled model stay in a physically-balanced state, which
help model dynamics project the initial signals onto a seasonal-interannual time scale.

1 Description of GFDL’s CDA system

Viewing the evolution of climate states as a continu-
ous stochastic dynamical process, the GFDL’s cou-
pled ensemble data assimilation system (Zhang et al.
2007) directly solves for a temporally-varying joint
probability density function (joint-PDF) of oceanic
states. The filtering assimilation combines the ob-
servational PDF and the prior PDF derived from
the CGCM to produce an analysed PDF (Fig. 1).
In a super-parallelization configuration, the coupled
assimilation is a continuous data-incorporation pro-
cess (Fig. 2), which includes currently the atmo-
spheric and oceanic data assimilation components
(Fig. 3). Due to capturing the probabilistic nature
of climate evolution, this system has been used to
facilitate the detection (Zhang et al. 2008) and pre-
diction of seasonal-to-multidecadal climate variabil-
ity and climate trends. This study addresses the
estimates and forecasts of the seasonal and interan-
nual variability in the tropical Pacific Ocean.

2 Data

Oceanic observations include the real-time oceanic
states’ samples from available oceanic observing net-
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Figure 1: Cartoon of how an ensemble filter updates
the distribution for a scalar variable. The upperleft
reprsents the prior distribution derived from model en-
semble integrations starting from the previous assimila-
tion results. The upperright represents an observational
distribution (usually Gaussian). An ensemble filtering
process (lowerleft) combines the observational and prior
distributions to form an updated ‘analyzed‘ distribution
(lowerright) realized by the ensemble member states that
initialize next ensemble integrations.

works. They are: XBTs, CTDs, MBTs, MRBs,
OSDs, Gridded sea-surface temperatures (SSTs of
the 20th-century and Argo, XBTs, MRBs, Gridded
SSTs of the 21st-century. At this time, the altimet-
ric data have not been used.



*

Figure 2: Flow-chart of the GFDL’s super-parallelized
coupled data assimilation system for 180 PEs case. Gen-
erally, this system can be scaled for any ensemble size
and any big enough processing element (PE) number.
But in practice due to efficiency consideration it is cur-
rently scaled for running 6, 12, 24 ensemble members.
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Figure 3: Schematic diagram illustrating how the
GFDL’s coupled model exchanges fluxes between
model components (black arrows), and constraints of
oceanic/atmospheric observations in this particular cli-
mate detection study (red arrows). The dashed green
arrow denotes the radiative forcings in the coupled sys-
tem, and the dashed means that the radiative forcings
used during assimilation is set as fixed-year (1860).

Atmospheric data are the NCEP/NCAR-
reanalysis gridded atmospheric variables including
wind (u,v) and temperature. The specific humidity
is a very sensitive variable for the coupled assimila-
tion, and at this time, is not used for the coupled
reanalysis.

3 Results of ocean state estmates

The RMS errors of the assimilated SSTs are shown
in Fig. 4. The global SST’s errors are reduced by
0.7oC from the model simulated 1.8oC. The tropical
Pacific SST’s errors are reduced by 0.4oC from the

model simulated 1.6oC. The variability of El Nino
and Southern Oscillation (ENSO) is completely re-
constructed (Fig. 5).

*

Figure 4: The RMS errors of assimilated global (green)
and tropical Pacific (red) SSTs. The corresponding free
model simulation’s RMS errors are plotted by black-solid
(global) and black-dashed (tropical Pacific) as the refer-
ence. The arrows denote the subsurface data (in situ
measurements) are throughout the period and SST ob-
servations atmospheric data are used starting from 1979
and 1981 respectively.
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Figure 5: Top: Time series of observed (dashed
lines) and analysed (solid lines) domain-averaged SST’s
anomalies in Nino4 (green), Nino3.4 (black) and Nino3
(red). Lower 3 panels: Time series of analysed domain-
averaged potential temperature anomalies in Nino4
(upper-middle), Nino3.4 (lower-middle) and Nino3 (bot-
tom). The contour interval is 0.5oC.

4 Impact on ENSO forecasts

25 year (82-06) one-year ENSO retrospective fore-
casts initialized at each month have been done. The



anomaly correlation coefficients (ACC) of forecasted
and observed SSTs and normalized RMS errors of
forecasted SSTs are shown in Fig. 6 in forecast
leading time and initial time space. Compared to
the forecasts initialized from GFDL’s old 3D-Var
assimilations, the new coupled ensemble assimila-
tion widens the valid forecast area (ACC > 0.6 and
the normalized RMS errors < 1.0) tremendously.
4 individual months were selected to represent the
forecast skills in different seasons being shown in
Fig. 7 and 8. Referred to the persistent forecasts,
the new coupled ensemble assimilation improves the
short (1-4 months) forecast skills dramatically while
extending the valid leading forecast time up to 9
months from the 3D-Var’s 3 months.

*

Figure 6: Distributions of anomaly correlation coeffi-
cients of forecasted and observed SSTs, and the normal-
ized RMS errors of forecasted SSTs in Nino3 produced
by GFDL’s old 3D-Var system (upper) and the new cou-
pled ensemble filter (ENSF) (lower), in forecast leading
time and initial time space. The contour interval is 0.1.
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Figure 7: Variations of anomaly correlation coefficients
of forecasted and observed Nino3 SSTs, produced by per-
sistent forecast (black), 3D-Var (red), ENSF(blue). The
green line called the perfect model forecast which sets an
individual member as the “truth” and uses the ensemble
mean of the rest of members to forecast the truth.
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Figure 8: Variations of normalized RMS errors of
forecasted Nino3 SSTs produced by persistent forecast
(black), 3D-Var (red), ENSF (blue) and perfect model
forecast (green).


